了解數家以 in silico 預測技術專注於新藥開發的國際公司,包括 Exscientia、Insilico Medicine、Absci、Generate Biomedicines 和 Deep Genomics,並深入探討其核心平台與技術優勢。
以下是一些國際上以 in silico 預測技術從事新藥開發的公司:
Exscientia 總部位於英國牛津,專注於利用人工智慧和機器學習技術進行藥物設計和開發,已有多款藥物進入臨床試驗階段。
Insilico Medicine 總部位於香港,致力於使用深度學習和分子建模技術加速藥物發現,特別是在癌症和神經退行性疾病領域。
Absci 位於美國華盛頓州溫哥華,利用人工智慧技術搜索數十億種潛在藥物設計,旨在降低藥物開發成本並加速上市時間。
Generate Biomedicines 位於美國麻省劍橋,專注於利用人工智慧設計新的蛋白質藥物,特別是在基因治療和疫苗開發方面。
Deep Genomics 總部位於加拿大多倫多,將人工智慧應用於基因組學,開發針對罕見疾病的藥物。
這些公司透過 in silico 預測技術,利用計算機模擬和建模,加速新藥的發現和開發過程。
以下是國際上數家以 in silico 預測技術進行新藥開發的公司詳細介紹:
總部位於英國牛津的 Exscientia 是全球領先的 AI 藥物開發公司之一。他們專注於結合人工智慧和機器學習進行藥物設計,並致力於加速新藥發現過程。Exscientia 的技術平台可以從大量化合物中篩選出潛在的候選藥物,並進行精準設計,縮短了新藥的前期研發週期。Exscientia 已成功設計出多款進入臨床試驗的藥物,其中包括癌症和免疫疾病治療劑,是業界中極具影響力的 AI 新藥開發公司之一。
位於香港的 Insilico Medicine 使用深度學習和分子建模技術進行藥物研發,尤其在癌症、纖維化和神經退行性疾病的治療領域。他們的 AI 平台涵蓋了多項創新技術,包括藥物靶點發現、先導化合物設計和臨床試驗模擬。Insilico Medicine 以其開創性的 AI 驅動平台「PandaOmics」和「Chemistry42」聞名,可以幫助研究者從基因組、蛋白質組等多層次數據中發掘有效的藥物靶點,並進行化學合成模擬,快速設計出藥物分子。
位於美國華盛頓州溫哥華的 Absci 專注於利用 AI 技術來設計和篩選生物藥物。他們的技術平台通過分析數十億種可能的分子設計組合來篩選最佳候選藥物,顯著縮短了生物藥的研發時間和成本。Absci 的技術尤其適用於蛋白質藥物的設計,能夠快速找出有效的蛋白質配方,從而應用於癌症和免疫療法中,對於生物藥物的開發具有極高的實用性。
位於美國麻省劍橋的 Generate Biomedicines 是一家專注於蛋白質設計的 AI 生物技術公司。公司利用生成式 AI 來設計新的蛋白質藥物,並針對基因治療、抗體藥物和疫苗的需求,快速研發出候選藥物。Generate Biomedicines 的平台可以根據治療需求生成特定的蛋白質序列,並預測其治療效果,該公司在 AI 驅動蛋白質藥物設計領域內獨具創新性,幫助其在腫瘤、感染性疾病、代謝病等領域中推動新藥開發。
加拿大多倫多的 Deep Genomics 將 AI 應用於基因組學,用於發現針對罕見疾病的基因治療藥物。其 AI 平台能夠分析和解讀大量的基因組數據,從中找出與疾病相關的基因突變,並設計出針對性的小分子藥物。Deep Genomics 尤其擅長 RNA 相關的疾病基因研究,並已經成功進入臨床前試驗階段。該公司在罕見病的治療上成效顯著,並逐漸擴展至神經系統和代謝疾病等領域。
這些公司利用 in silico 預測技術,結合人工智慧及計算模擬技術,加速新藥研發,成為當今生技藥物開發領域的關鍵參與者。
Insilico Medicine 的 AI 平台「PandaOmics」和「Chemistry42」是其核心技術,專為新藥研發設計,以下是這兩個平台的詳細介紹:
「PandaOmics」是一個針對疾病靶點發現的 AI 驅動平台,結合基因組學和生物信息學,以加速並精準地發掘新藥研發的潛在靶點。
多層次數據整合:PandaOmics 利用多種數據資源,包括基因組、轉錄組、蛋白質組、化合物反應及臨床數據,從不同層面上解析疾病機制。
疾病-靶點匹配:該平台可以針對特定疾病進行靶點篩選,利用 AI 演算法快速識別出可能與疾病相關的基因,並預測其在疾病中的作用機制。
風險預測與篩選:PandaOmics 擁有強大的風險預測功能,能夠評估每個靶點的藥物可行性與風險,幫助研究者更有效地選擇潛力靶點。
應用場景:這個平台主要應用於癌症、神經退行性疾病及代謝性疾病等多種複雜病症的靶點發現。該平台對於開發治療此類疾病的藥物非常有幫助,能夠將研究範圍聚焦在最有潛力的靶點上,進一步加速新藥發現。
「Chemistry42」是一個為化合物設計和模擬提供支持的 AI 平台,利用生成式 AI 和分子建模技術來設計潛在的候選化合物。
生成式 AI 建模:Chemistry42 採用生成式神經網絡,可在原子層級進行分子生成和優化,快速生成符合特定藥理學特性的分子。此技術能大幅度縮短從初始分子設計到候選藥物的時間。
分子特性優化:該平台可以針對分子的特定特性(如溶解度、生物利用度和毒性)進行優化,以確保候選化合物在藥效和安全性方面都達到最佳標準。
虛擬篩選和模擬:Chemistry42 能進行虛擬篩選和模擬,幫助研究者快速過濾出最具潛力的化合物,並預測這些化合物在體內的代謝和相互作用情況。
應用場景:該平台適用於設計新分子並優化現有化合物,廣泛應用於癌症治療、抗感染藥物、神經科學等多種領域。
PandaOmics 和 Chemistry42 兩個平台互補協同,前者專注於靶點發現與風險評估,而後者則專注於分子設計與優化。這一套技術工具鏈有效地連接從疾病靶點發現到候選藥物設計的整個新藥研發流程。這些平台使 Insilico Medicine 可以加速藥物開發週期,並提供比傳統方法更精準且高效的解決方案。
Insilico Medicine 的「PandaOmics」平台有採用基因集富集分析(Gene Set Enrichment Analysis, GSEA)技術,以便在疾病靶點發現過程中深入分析基因表現數據。以下是 GSEA 在 PandaOmics 中的具體應用:
辨識疾病相關基因:PandaOmics 透過 GSEA 來評估特定基因集(例如參與特定疾病過程的基因群組)在不同實驗條件或樣本中的富集情況,幫助發現可能的治療靶點。
路徑分析:PandaOmics 結合 GSEA 結果和路徑分析,找出與疾病相關的信號通路,幫助研究者更全面地理解疾病機制。
資料層級整合:GSEA 在多層次數據整合中發揮關鍵作用,PandaOmics 能將轉錄組、蛋白質組等資料一起分析,通過 GSEA 確認基因的富集狀態,找到重要的生物學途徑和潛在的藥物靶點。
而「Chemistry42」平台則不直接涉及 GSEA 技術。該平台專注於分子設計與優化,主要是利用生成式 AI 和分子建模進行化合物篩選和模擬,並不依賴基因表現數據,因此也無法直接應用 GSEA 分析。
Insilico Medicine 官方網站
Insilico Medicine 的商業模式以其專有的人工智慧平台為核心,涵蓋從靶點發現到藥物設計的整個新藥開發流程。
靶點發現:利用 AI 技術分析多層次的生物數據,確定與疾病相關的靶點。
藥物設計:運用生成式 AI 和分子建模技術,設計具有特定藥理特性的化合物。
整合平台:提供從疾病靶點發現到候選藥物設計的一站式解決方案,加速藥物開發進程。
透過這種整合式的 AI 驅動方法,Insilico Medicine 致力於提高新藥研發的效率和成功率,為製藥產業帶來創新性的變革。
Examples of Companies Using In Silico Prediction for New Drug Development
Below are some international companies actively using in silico prediction technologies in drug development:
Exscientia is based in Oxford, UK, and focuses on leveraging AI and machine learning for drug design and development, with multiple drugs already in clinical trials.
Insilico Medicine is headquartered in Hong Kong and accelerates drug discovery with deep learning and molecular modeling, focusing on cancer and neurodegenerative diseases.
Absci is located in Vancouver, Washington, USA, and uses AI to search billions of potential drug designs, aiming to reduce development costs and accelerate time-to-market.
Generate Biomedicines in Cambridge, Massachusetts, USA, specializes in AI-driven protein drug design, particularly for gene therapy and vaccine development.
Deep Genomics is headquartered in Toronto, Canada, applying AI to genomics to develop drugs for rare diseases.
These companies utilize in silico prediction technologies, using computational modeling and simulations to accelerate the drug discovery and development process.
Detailed Overview of Companies Using In Silico Prediction Technology
Exscientia: AI-Driven Drug Design
Exscientia, based in Oxford, UK, is one of the global leaders in AI-driven drug development. Their platform combines AI with machine learning for efficient drug design, focusing on accelerating the early stages of drug discovery. Exscientia has successfully designed multiple drugs now in clinical trials, including therapies for cancer and immune diseases, establishing itself as a key player in AI drug development.
Insilico Medicine: Genomics and Molecular Modeling Platforms
Headquartered in Hong Kong, Insilico Medicine uses deep learning and molecular modeling technologies for drug development, especially in cancer, fibrosis, and neurodegenerative diseases. Their core AI platforms include "PandaOmics" and "Chemistry42":
PandaOmics: This AI-driven platform aids in target discovery for diseases by integrating genomics and bioinformatics. It leverages data sources across genomics, transcriptomics, proteomics, and clinical data, identifying disease-relevant targets to speed up drug discovery.
Chemistry42: This molecular design platform uses generative AI to create and optimize candidate molecules. By simulating properties like solubility and toxicity, it enables rapid design of safe and effective compounds, widely applied in cancer, neuroscience, and infectious disease research.
Absci: AI-Enhanced Biopharmaceutical Screening
Absci, based in Vancouver, Washington, USA, focuses on biopharmaceuticals by using AI to screen and design proteins. Their platform analyzes billions of molecular design combinations to identify the best candidate drugs, greatly reducing the time and costs involved in biopharmaceutical development. Particularly suited for protein-based drugs, Absci’s technology enables rapid identification of potent protein formulas for applications in oncology and immunotherapy.
Generate Biomedicines: Generative AI for Protein Design
Located in Cambridge, Massachusetts, Generate Biomedicines is a biotech company focused on protein design using generative AI. Their platform can generate protein sequences based on therapeutic requirements and predict their effects, facilitating the rapid development of drug candidates for gene therapy, antibody drugs, and vaccines. Generate Biomedicines has established a significant presence in AI-driven protein therapeutics, advancing drug development in cancer, infectious diseases, and metabolic disorders.
Deep Genomics: AI-Driven Genomics in Drug Development
Toronto-based Deep Genomics applies AI to genomics for identifying gene therapy drugs targeted at rare diseases. Their AI platform analyzes vast amounts of genomic data to identify gene mutations linked to diseases, and then designs targeted small molecule drugs. Deep Genomics has a particular focus on RNA-related diseases and has advanced into preclinical trials, with plans to expand into neurological and metabolic disease treatment.
By combining AI with computational modeling, these companies accelerate drug discovery, shaping the future of biotechnology and pharmaceutical industries.
Detailed Description of Insilico Medicine’s Platforms: PandaOmics and Chemistry42
Insilico Medicine’s "PandaOmics" and "Chemistry42" are the core platforms specifically designed for drug discovery. Below is a detailed description of each platform:
PandaOmics: Genomics-Based Target Discovery Platform
"PandaOmics" is an AI-driven platform for target discovery, integrating genomics and bioinformatics to accelerate the identification of promising drug discovery targets.
Multi-Omics Data Integration: PandaOmics leverages a wide range of data, including genomics, transcriptomics, proteomics, chemical response, and clinical information, providing a multi-perspective analysis of disease mechanisms.
Disease-Target Matching: This platform screens for targets linked to specific diseases by identifying genes associated with the disease and predicting their mechanisms.
Risk Prediction and Filtering: With a robust risk prediction feature, PandaOmics assesses the druggability and potential risks of each target, helping researchers select the most viable options.
Applications: PandaOmics is ideal for discovering targets in cancer, neurodegenerative diseases, and metabolic disorders. The platform narrows research to the most promising targets, expediting new drug discovery.
Chemistry42: Molecular Design and Synthesis Simulation Platform
"Chemistry42" is an AI platform supporting compound design and simulation, using generative AI and molecular modeling to create candidate compounds.
Generative AI Modeling: Chemistry42 employs generative neural networks to create and optimize molecules at the atomic level, rapidly generating compounds with specific pharmacological traits. This approach significantly shortens the timeline from initial molecule design to selecting viable drug candidates.
Molecular Property Optimization: This platform optimizes molecules for properties like solubility, bioavailability, and toxicity, ensuring candidates meet the highest standards for efficacy and safety.
Virtual Screening and Simulation: Chemistry42 conducts virtual screening and simulation, allowing researchers to efficiently filter and predict the metabolic and interaction behavior of compounds.
Applications: Widely used for new molecule design and optimization of existing compounds, Chemistry42 is applied in cancer treatment, anti-infective drugs, and neuroscience.
Summary
Together, PandaOmics and Chemistry42 form a complementary suite of tools, connecting target discovery with candidate drug design in a cohesive drug development workflow. Insilico Medicine leverages this integrated AI technology to accelerate the drug discovery cycle, providing a more precise and efficient solution than traditional methods.
Does Insilico Medicine Use GSEA Technology?
Insilico Medicine’s PandaOmics platform incorporates Gene Set Enrichment Analysis (GSEA) technology to provide deeper insights during target discovery by analyzing gene expression data. The GSEA applications within PandaOmics include:
Identifying Disease-Associated Genes: PandaOmics uses GSEA to evaluate gene sets associated with specific disease processes under various experimental conditions or samples, helping to identify potential therapeutic targets.
Pathway Analysis: By integrating GSEA results with pathway analysis, PandaOmics identifies disease-relevant signaling pathways, assisting researchers in understanding disease mechanisms.
Multi-Layer Data Integration: GSEA plays a critical role in integrating multi-omics data in PandaOmics, combining transcriptomics and proteomics to verify gene enrichment status and pinpoint critical biological pathways and potential drug targets.
Conversely, Chemistry42 does not directly employ GSEA technology, as it focuses primarily on molecule design and optimization through generative AI and molecular modeling, rather than relying on gene expression data.
Insilico Medicine’s Business Model Overview
Insilico Medicine Official Website
Insilico Medicine’s business model is built around proprietary AI platforms, offering an end-to-end drug discovery solution from target identification to compound design.
Core Aspects of the Business Model
Target Discovery: Using AI to analyze multi-layer biological data, Insilico Medicine identifies targets associated with various diseases.
Drug Design: Leveraging generative AI and molecular modeling, the company designs compounds with specific pharmacological properties.
Integrated Platform: By providing a comprehensive platform from disease target identification to candidate drug design, Insilico Medicine accelerates the drug development timeline.
Through this AI-driven approach, Insilico Medicine aims to enhance drug discovery efficiency and success rates, driving innovation within the pharmaceutical industry.